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Abstract

We examine mixedness and entanglement of the chronology-respecting (CR) system with assum-

ing that quantum mechanical closed timelike curves (CTCs) exist in nature and by introducing the

qubit system and applying the general controlled operations between CR and CTC systems. We

use the magnitude of Bloch vector as a measure of mixedness. While Deutschian-CTC (D-CTC)

either preserves or decreases the magnitude, postselected-CTC (P-CTC) can increases it. Nonin-

tuitively, even the completely mixed CR-qubit can be converted into a pure state after CTC-qubit

travels around the P-CTC. It is also shown that while D-CTC cannot increase the entanglement of

CR system, P-CTC can increase it. Surprisingly, any partially entangled state can be maximally

entangled pure state if P-CTC exists. Thus, distillation of P-CTC-assisted entanglement can be

easily achieved without preparing the multiple copies of the partially entangled state.
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Introduction.—It is well-known that the theory of general relativity allows the possible

existence of closed timelike curves (CTCs)[1–3]. However, allowance of time travel generates

logical paradoxes such as the grandfather paradox. Deutsch[4] solved this paradox from

an aspect of quantum information theories by deriving self-consistent equation of CTC

interaction. Thus, it makes it possible to explore the properties of CTCs without relying on

the exotic spacetime geometries.

Then, it is natural to ask how quantum mechanics is modified if Deutsch’s CTCs (D-

CTCs) exist. For last few years this question was explored in the various contexts[5–11].

Among them most striking result is that any non-orthogonal states can be perfectly distin-

guished if one can access to D-CTCs[8]. This fact implies that Security of usual quantum

cryptography scheme such as BB84 protocol[12] is not guaranteed. Subsequently, the au-

thors of Ref.[13] raised a question on the perfect discrimination and computational power in

the presence of D-CTCs. They argued that when the input state is a labeled mixture, the

assistance of CTCs in distinguishability and computational power is of no use. However,

their argument was also criticized in Ref.[14]. The authors of Ref.[14] claimed by construct-

ing the equivalent circuit that the CTCs would be a true powerful resource for quantum

information processing. Another nonintuitive result arising due to existence of D-CTCs is

that any arbitrary dimensional quantum states can be perfectly cloned if the dimension of

the CTC system is infinite[10, 11]. Thus, the well-known no-cloning theorem[15] can be

broken in the presence of D-CTCs.

The Deutsch’s self-consistency condition is expressed as

ρ
(CTC)
out ≡ trCR

[

U
(

ρ
(CR)
in ⊗ ρ

(CTC)
in

)

U †
]

= ρ
(CTC)
in (1)

where ρ
(CR)
in and ρ

(CTC)
in are input states of the chronology-respecting (CR) and chronology-

violating systems, respectively. The operator U represents the unitary interaction between

CR and CTC systems. Deutsch showed[4] that the fixed-point solution of Eq. (1) always

exists, but it does not necessarily have to be unique. If there are many solutions, Deutsch

suggested the maximum entropy rule. If ρ(CTC) is fixed, the CR system is evolved as

ρ
(CR)
in → ρ

(CR)
out ≡ trCTC

[

U
(

ρ
(CR)
in ⊗ ρ

(CTC)
in

)

U †
]

. (2)

The output state ρ
(CR)
out is in general non-unitary evolution of ρ

(CR)
in , because ρ

(CR)
out depends

on both ρ
(CR)
in and ρ(CTC), and ρ(CTC) also depends on ρ

(CR)
in .
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The post-selected CTCs[16–18] (P-CTCs) are another type of quantum mechanical CTCs,

which also solve the paradoxes. P-CTCs provide a self-consistent picture of quantum me-

chanical time travel via post-selected quantum teleportation[19]. It is based on the Horowitz-

Maldacena “final state condition”[20] for black hole evaporation[21] and are consistent with

path-integral approaches to CTCs[22, 23]. In P-CTCs formalism the state in CTC-system

is not explicitly specified while the output state of the CR-system is given by

ρ
(CR)
out ∝ V ρ

(CR)
in V † (3)

where V = trCTCU . It turned out that though P-CTCs are less powerful resource than

D-CTCs in the quantum information processing, they also have a computational and dis-

crimination power[24].

In this Letter we explore the following issues. By introducing simple qubit system and

general controlled operations mixedness of the CR system is examined. The mixedness is

measured by a magnitude of Bloch vector. It is shown that the magnitude of Bloch vector

for qubit system assisted by D-CTCs either preserves or decreases. Thus, the pure CR-

state can propagate to mixed state when CTC-qubit travels around the D-CTC. In this

sense CTC-problem resembles the information loss problem[25, 26] in Hawking radiation.

For P-CTCs, however, the magnitude of Bloch vector can increase. In this case a mixed

state can evolve to a pure state. Even the completely mixed state can be converted into

a pure state if the controlled operation is chosen appropriately. We also examine how the

entanglement of the CR-system is changed in the presence of CTCs. While D-CTCs always

either preserve or degrade the entanglement, P-CTCs can increase it. Surprisingly, if any

partially entangled CR-state is prepared, one can change it into a maximally entangled

pure state if P-CTCs assist. This fact implies that distillation of entanglement[27, 28] can

be easily achieved without preparing the many copies of the partially entangled state if

P-CTCs are appropriately exploited.

Mixedness.—We examine the mixedness of the CR-system when there is an interaction

of the controlled-U2 operation between CR and CTC systems, where U2 is represented by

four real parameters as follows;

U2 = eiφ/2





cos θeiφ1 sin θeiφ2

− sin θe−iφ2 cos θe−iφ1



 . (4)
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ρ
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in

ρ
(CTC)
in

(a)







ρout

ρ
(CTC)
in

{

|ψ
(CR)
in

〉

}

ρ
(CTC)
out

(a) (b)

FIG. 1: (a) Circuit for examining the mixedness of CR-system when CR and CTC systems interact

with each other through general controlled operations. The U2 is represented by Eq. (4). The

double vertical bars on the bottom left and right indicate the past and future mouths of the

wormhole for the CTC. (b) Circuit for examining the entanglement of CR-state in the presence of

CTC. We choose the initial CR-state as a partially entangled state |ψ
(CR)
in 〉 = α|00〉 + β|11〉 with

α2 + β2 = 1 and |β| ≥ |α|.

The initial CR-state is chosen as a general form of one-qubit ρ
(CR)
in = 1

2
(I2 + r · σ), where

|r| = 0 and |r| = 1 correspond to the completely mixed and pure states, respectively. We

assume r3 6= 1 because if r3 = 1, the controlled operation cannot be turned on.

For the case of P-CTC one can derive the output-CR state by making use of Eq. (3) as

ρCR
out =

1
2
(I2 + r

′ · σ), where

r′1 =
2 cos θ cosφ1

(1 + r3) + cos2 θ cos2 φ1(1− r3)

(

r1 cos
φ

2
− r2 sin

φ

2

)

r′2 =
2 cos θ cosφ1

(1 + r3) + cos2 θ cos2 φ1(1− r3)

(

r1 sin
φ

2
+ r2 cos

φ

2

)

(5)

r′3 =
(1 + r3)− cos2 θ cos2 φ1(1− r3)

(1 + r3) + cos2 θ cos2 φ1(1− r3)
.

Then, one can show directly

|r′|2 − |r|2 = (1− |r|2)

[

1−

(

2 cos θ cosφ1

(1 + r3) + cos2 θ cos2 φ1(1− r3)

)2
]

. (6)

As expected, Eq. (6) guarantees that the pure input CR-state always evolves into pure.

Since, however, the right-hand side of Eq. (6) can be positive or negative depending on U2,

the CR-state can evolve with increasing or decreasing its mixedness. Even though ρ
(CR)
in is

completely mixed state, ρ
(CR)
out becomes pure state |0〉〈0| when θ = π/2 or φ1 = π/2. Thus,

P-CTC allows the evolution from mixed to pure state if qubit travels around the P-CTC.
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However, the situation is different if the CR-system is assisted by D-CTC. If the initial

CTC-state ρ
(CTC)
in is chosen as a general form ρ

(CTC)
in = 1

2
(I2 + s · σ), one can show directly

ρ
(CTC)
out ≡ trCR

[

Uρ
(CR)
in ⊗ ρ

(CTC)
in U †

]

= 1
2
(I2 + s

′ · σ), where

∆s1 = −(1− r3)

[

s1
(

sin2 φ1 + sin2 θ cos(φ1 + φ2) cos(φ1 − φ2)
)

−s2
(

cos2 θ sinφ1 cosφ1 + sin2 θ sinφ2 cosφ2

)

+ s3 sin θ cos θ cos(φ1 + φ2)

]

(7)

∆s2 = −(1− r3)

[

s1
(

cos2 θ sinφ1 cosφ1 − sin2 θ sinφ2 cosφ2

)

+s2
(

sin2 φ1 − sin2 θ sin(φ1 + φ2) sin(φ1 − φ2)
)

− s3 sin θ cos θ sin(φ1 + φ2)

]

∆s3 = (1− r3) sin θ

[

s1 cos θ cos(φ1 − φ2) + s2 cos θ sin(φ1 − φ2)− s3 sin θ

]

with ∆sj = s′j − sj (j = 1, 2, 3). Then, the self-consistency condition (1) simply reduces to

∆sj = 0.

condition solution of self-consistency condition

sin θ = 0, sinφ1 = 0 no constraint

sin θ = 0, sinφ1 6= 0 s1 = s2 = 0

sin θ 6= 0, sinφ1 = 0 s1 = s2 tanφ2, s3 = 0

sin θ 6= 0, sinφ1 6= 0 s1 = s3 tan θ cscφ1 sin φ2, s2 = s3 tan θ csc φ1 cosφ2

Table I: Solutions of the self-consistency condition for various U2.

The solutions of the self-consistency condition is summarized in Table I for various U2.

In this Letter we discuss only the case of sin θ 6= 0 and sinφ1 6= 0, because the remaining

cases can be discussed similarly. Since |s| ≤ 1, the self-consistency condition implies

s23 ≤
sin2 φ1

sin2 φ1 + tan2 θ
(8)

where equality holds for pure CTC-state. Then, the output CR-state becomes ρ
(CR)
out ≡

trCTC

[

Uρ
(CR)
in ⊗ ρ

(CTC)
in U †

]

= 1
2
(I2 + r

′ · σ), where

r′1 = Pr1 −Qr2 r′2 = Qr1 + Pr2 r′3 = r3 (9)

with

P = cos
φ

2
cos θ cosφ1 − s3 sin

φ

2

sin2 θ + cos2 θ sin2 φ1

cos θ sin φ1
(10)

Q = sin
φ

2
cos θ cosφ1 + s3 cos

φ

2

sin2 θ + cos2 θ sin2 φ1

cos θ sin φ1
.
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Therefore, |r′|2 = (P 2 +Q2)(r21 + r22) + r23, where

P 2 +Q2 = cos2 θ cos2 φ1 + s23

(

sin2 θ + cos2 θ sin2 φ1)

cos θ sinφ1

)2

.

When s23 saturates the inequality (8), it is easy to show |r′| = |r|. Thus, the mixedness of

the CR-system is preserved when the CTC-system is pure. When CTC-state is mixed, ρ
(CR)
out

is more mixed than ρ
(CR)
in , i.e. |r′| < |r|. If the Deutsch’s maximum entropy postulate is

chosen, ρ
(CR)
out becomes the maximal mixed state |r′|2 = cos2 θ cos2 φ1(r

2
1 + r22) + r23. Thus,

any pure states of the form 1√
2

(

|0〉+ eiθ|1〉
)

can be converted into the completely mixed

state when cos θ = 0 or cosφ1 = 0 if maximum entropy rule is chosen.

Entanglement—We examine how the entanglement of CR-system is changed in the pres-

ence of CTCs. To explore this issue we introduce partially entangled two-qubit initial state

|ψ
(CR)
in 〉 = α|00〉 + β|11〉 where α2 + β2 = 1. We also choose |β| ≥ |α| without loss of gen-

erality. One party of CR-system interacts with CTC through the controlled-U2 operation.

The other party has no interaction with the CTC-system. This situation is depicted in Fig.

1(b) as a quantum circuit. We will use the concurrence[29] as an entanglement measure.

The concurrence of |ψ
(CR)
in 〉 is 2|αβ|.

For the case of P-CTC one can derive ρ
(CR)
out by making use of Eq. (3) in a form

ρ
(CR)
out =

1

α2 + β2 cos2 θ cos2 φ1

[

α2|00〉〈00|+β2 cos2 θ cos2 φ1|11〉〈11| (11)

+αβe−iφ/2 cos θ cosφ1|00〉〈11|+αβe
iφ/2 cos θ cosφ1|11〉〈00|

]

.

The concurrence of ρ
(CR)
out is easily computed by following the procedure of Ref.[29] and final

expression is

C
(

ρ
(CR)
out

)

= 2|αβ|γ (12)

where the ratio γ is

γ =
| cos θ cosφ1|

α2 + β2 cos2 θ cos2 φ1
. (13)

It is remarkable to note that the ratio γ is dependent on both U2 and the initial CR-state.

Surprisingly, one can always make ρ
(CR)
out maximally entangled pure state 1√

2
(|00〉±eiφ/2|11〉)

by choosing cos θ cosφ1 = ±α
β
. Thus, if P-CTC exists, the distillation of entanglement

of CR-system can be easily achieved without preparing multiple copies of the partially

entangled state. It is sufficient to prepare a single copy for complete distillation by choosing

U2 appropriately.
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The situation is different for the case of D-CTC. We define the initial CTC-state as

a one-qubit general form ρ
(CTC)
in = 1

2
(I2 + s · σ). Then, the output CTC state becomes

ρ
(CTC)
out ≡ trCR

[

U |ψ
(CR)
in 〉〈ψ

(CR)
in |⊗ρ

(CTC)
in U †

]

= 1
2
(I2 + s

′ · σ), where ∆sj (j = 1, 2, 3) are

exactly the same with Eq. (7) if 1− r3 is changed into 2β2. Thus, the solutions of the self-

consistency condition are identical with those given in Table I. One can also show directly

that the output CR-state is

ρ
(CR)
out ≡ trCTC

[

U |ψ
(CR)
in 〉〈ψ

(CR)
in |⊗ρ

(CTC)
in U †

]

= α2|00〉〈00|+β2|11〉〈11|+A|00〉〈11|+A∗|11〉〈00|

(14)

where

A = e−iφ/2αβ [cos θ cosφ1 − i (s1 sin θ sinφ2 + s2 sin θ cosφ2 + s3 cos θ sin φ1)] . (15)

It is easy to show that the concurrence of ρ
(CR)
out is

C
(

ρ
(CR)
out

)

= 2min (|A|, |αβ|) . (16)

Thus, D-CTC can either preserve or decrease the entanglement of CR-system.

For example, let us consider the case of sin θ 6= 0 and sinφ1 6= 0. Then, the variation of

entanglement ∆E ≡ C
(

ρ
(CR)
in

)

−C
(

ρ
(CR)
out

)

can be computed by making use of Eq. (16) and

Table I:

∆E = 2|αβ|

[

1−

√

1−

(

1−
sin2 φ1 + tan2 θ

sin2 φ1

s23

)

(

sin2 θ + cos2 θ sin2 φ1

)

]

. (17)

Thus, if the inequality (8) is saturated, ∆E vanishes. This means that if the CTC-state is

pure, the entanglement of CR-state is preserved. If we choose the maximal entropy CTC-

state as Deutsch suggested, the maximal degradation of entanglement ∆E = 2|αβ|(1 −

| cos θ cosφ1|) occurs.

Conclusions—Although the theory of general relativity does allow CTC as a solution

of Einstein field equation, still there are a lot of controversial for existence of CTCs. In

this Letter we have addressed two issues, mixedness and entanglement for CR system with

assuming that D-CTC and/or P-CTC exist(s) in nature. It was shown that while D-CTC-

assisted qubit cannot increase the magnitude of its Bloch vector, P-CTC-assisted qubit

can. As a result, the mixed CR-state can evolve to pure CR-state if P-CTC exists. Even

the completely mixed state can evolve to pure state if we choose the phase angles of U2

appropriately.
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Although the CTC-state is not specified explicitly for the case of P-CTC, one can get

some information of P-CTC-state if exists any. Let us imagine a closed system consists of

CR and P-CTC subsystems. Let us assume that they interacts with each other through some

unitary operation. If one uses the subadditivity of the von Neumann entropy one can show

∆S(CTC) ≥ −∆S(CR), where S is a von Neumann entropy and ∆S(·) ≡ S
(

ρ
(·)
out

)

− S
(

ρ
(·)
in

)

.

Thus, computing the entropy difference of CR-subsystem one can compute the lower bound

of ∆S(CTC) although we do not know the P-CTC state explicitly.

We also have studied the case where the CR-system consists of bipartite partially entan-

gled particles and one of them interacts with CTC system through controlled-U2 operation.

For the case of P-CTC surprisingly the partially entangled state can always be converted into

the maximally entangled pure state if the phase angles of U2 are chosen appropriately. If,

therefore, P-CTCs exist, the distillation protocol of entanglement is easily achieved without

preparing the multiple copies of the partially entangled state. For the case of D-CTC such a

nonintuitive effect disappears because D-CTC either preserves or decreases the entanglement

of CR system.

There are a lot of questions in the context of CTCs. How to incorporate the general

relativistic CTCs into the quantum mechanical CTCs or vice versa? What happens to the

uncertainty relations if CTCs exist? Does black hole physics be modified if CTCs exist? Are

the thermodynamic laws still valid even if CTCs exist? Probably, the theory of quantum

gravity may give some answers in the future.
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