Building and Running gem5 with ALPHA_FS (full system) Mode
(Written by kyungsu.kang@gmail.com)

This tutorial introduces how to building and running Gem5 with ALPHA_FS mode. Gem5 is a full
system multiprocessor simulator that is capable of booting a full Linux system.

Section 1. gem5 basic set-up procedure

1. Preparing GemS for External Tool Dependency
Please, refer to http://www.m5sim.org/Dependencies and install the tools that you need.

2. Compiling Gem5 for ALPHA_FS Mode
a. Getgemb5
i. % hg clone http://repo.gem5.org/gem5
ii. % cd gem5
b. Make ALPHA_FS configuration file on the directory “build_opts”
i. % cd build_opts
ii. % cp ALPHA ALPHA_FS
iii. Modify ALPHA_FS by inserting the below line anywhere;
FULL_SYSTEM =1
iv. %cd.
c.  Build gem5 (This will take a few tens minute.)
i. % scons build/ALPHA_FS/gem5.opt
ii. More details about build gem5, refer to http://www.m5sim.org/Build_System

2. Installing full system files
a. Download the full system files; most the default full system files don't work well with
SPLASH-Download the ones that work for Parsec for M5 and use them instead. Get
tsb_osfpal from the obsolete full system files if you want to run more than 8
processors.
i. Download gem5 fullsystem.tar.gz from http://bigmail.mail.daum.net/Mail-
bin/bigfile_ down?uid=dYBLARPhzvuEUBVa9e7hszxxaCjSQbUY)
ii. % tar xvfz gem5_fullsystem.tar.gz
b. Edit environment path; SysPaths.py, Benchmarks.py, FSConfig.py
i. % cd configs/common
ii. Modify SysPaths.py by Path = [‘/dist/m5/system’, ‘/home/kang/gem5/dist’]
iii. Modify Benchmarks.py by disk(‘linux-parsec-2-1-m5.img’)
iv. Modify FSConfig.py by binary(‘tsb_osfpal’)
v. %cd./.

3. Running Gem5
a. % ./build/ALPHA_FS/gemb5.opt./config/example/fs.py
If you can see the message below from the system.terminal file, the booting is
successful.
Script from M5 read file is empty, starting bash shell...
#
For details, refer to $GEM5/m5out/system.terminal to monitor the process booting
the linux kernel.

4, Using M5Term to interact with the Gem5 simulation system
a. % cd $GEM5/util/term
b. % make
c. % make install
d. % mb5term localhost 3456
Now you can successfully communicate with the simulated Gem5 system.



Section 2. Running My Own Application in Gem5 with ALPHA_FS Mode

Obtaining cross-compile tools for ALPHA ISA

a.

o a0 o

Download cross-compile tools (e.g., gcc-4.3.2, glibc-2.6.1 (NPTL,x86/64)) from
http://www.m5sim.org/Download

mkdir CROSSCOMPILE

% cd CROSSCOMPILE

% cp /home/kang/Downloads/alphaev67-unknown-linux-gnu.tar.bz2 ./

% tar xfvj alphaev67-unknown-linux-gnu.tar.bz2

Compiling each program (e.g., parallel integral image kernel with pthread)

a.

N

Download scan.c from http://blog.daum.net/yjnks/92) to $GEMS5//tests/test-
progs/scan/

% cd ./tests/test-progs

% mKkdir scan

% cd scan

% cp /home/kang/Downloads/scan.c./

% $CROSSCOMPILE/alphaev67-unknown-linux-gnu/bin/alphaev67-unknown-linux-
gnu-cc -o scan.out scan.c -Ipthread -static

Loading the application binaries to the pre-compiled OS image (You can also refer to
http://gem5.org/Frequently Asked Questions#How_do_I_add files to_a_disk image.3F)

~F@ oo AN oD

% cd /home/kang/gem5

% mkdir MOUNT

% /bin/mount -o loop,offset=32256 ./dist/disks/linux-parsec-2-1-m5.img ./MOUNT
% cd ./MOUNT /benchmarks

% mkdir scan

% cd scan

% cp /home/kang/gemb5 /tests/test-progs/scan/scan.out ./

% cd /home/kang/gem5

% /bin/umount./MOUNT

Running your own application on Gem5 with M5Term

a.
b.
C.

% ./build/ALPHA_FS/gem5.opt ./config/example/fs.py

% mb5term localhost 3456 (executing this on the other terminal)
% cd /benchmarks/scan/scan.out

Now you can successfully see the simulation results.



Section 3. Running SPLASH-2 in Gem5 with ALPHA_FS Mode

Obtaining SPLASH-2 benchmark
a. Get SPLASH-2; the original website has been down since late 2009, so try
downloading from the wayback machine. When you untar the file it may say
"unexpected end of file", but that is OK.
i. % mkdir SPLASH-2
ii. % cd SPLASH-2
iii. wget http://web.archive.org/web/20080528165352 /http://www-
flash.stanford.edu/apps/SPLASH/splash2.tar.gz
iv. % tar xvfz splash2.tar.gz
b. Patch SPLASH-2
i. % cd splash2
ii. wget http://www.capsl.udel.edu/splash/splash2-modified.patch.gz
iii. gzip -d splash2-modified.patch.gz
iv. patch -p1 < splash2-modified.patch
c. Test SPLASH-2
i. % cd codes
ii. In codes/Makefile.config change the BASEDIR to where you downloaded it, and
on line 9 change the macros to “c.m4.null.POSIX” to support parallelism.
iii. % cd kernels/fft
iv. % make
v. % ./FFT-t

Compiling SPLASH-2 benchmark
a. Modifying CC, CFLAGS, and LDFLAGS in codes/Makefile.config
i. Change CCas
CC:= /home/kang/gem5/CROSSCOMPILE /alphaev67-unknown-linux-
gnu/bin/alphaev67-unknown-linux-gnu-gcc
ii. Inserttwo CFLAGs next to the last CFLAG as
CFLAGS := $(CFLAGS) -I/home/kang/gem5/CROSSCOMPILE/alphaev67-
unknown-linux-gnu/alphaev67-unknown-linux-gnu/sys-root/usr/include
CFLAGS := $(CFLAGS) -static -static-libgcc
iii. Insert LDFLAG next to the last LDFLAG as
LDFLAGS = $(LDFLAGS) -L/home/kang/gem5/CROSSCOMPILE/alphaev67-
unknown-linux-gnu/alphaev67-unknown-linux-gnu/lib
iv. % cd ./kernels/fft
v. % make

Loading the application binaries to the pre-compiled OS image (You can also refer to
http://gem5.org/Frequently Asked_Questions#How_do_I_add files to_a_disk image.3F)
a. Copy FFT onto the dist image gem5 will boot
i. % cd /home/kang/gem5
ii. % /bin/mount -o loop,offset=32256 ./dist/disks/linux-parsec-2-1-m5.img
./MOUNT
iii. % mkdir./MOUNT/benchmarks/splash2
iv. % cp./SPLASH-2/splash2/codes/kernels/fft/FFT
./MOUNT /benchmarks/splash2
v. % /bin/umount./MOUNT
b. Make rcS script file at ./configs/boot/fft.rcS
i. Make afile, fft.rcS
#1/bin/sh
cd benchmarks/splash2
echo “Running FFT now...”
JFFT -t -p1
#Gracefully exit gem5
/sbin/mb5 exit
ii. Add fft benchmark to configs/common/Benchmarks.py as
‘fft:  [SysConfig(‘fft.rcS’, ‘512MB’)],




c. Rungem5
i. % cd /home/kang/gem5
ii. % ./build/ALPHA_FS/gem5.opt./configs/example/fs.py -n 1 -b fft
iii. % mb5term localhost 3456 (executing this on the other terminal)

ETC.

Run (almost) all kernels and applications in M5

All the kernels run in M5 without any modification and report that they passed a self
test (run the command with the -t parameter):

ftt, lu, radix, cholesky

raytrace: Runs, but the program to check the output does not work.

ocean: Runs and the output matches correct.out within rounding tolerances.

radiosity: Significant differences between correct.out and MS5's output, need to get

XGL or YGL to verify the output.

water-*: Runs, but no way to verify results.

fmm: If it doesn't compile try renaming the complex type and using DBL DIG

and DpBL Max . The output doesn't match correct.out.

barnes: Runs, but no option to produce output to verify results.

volrend: This application depends on libtiff, which is a challenge to compile. To

compile libtiff first remove the -ansi flag in the Makefile. In tiffcompat.h

comment out lines 173-187 (the malloc precompiler directives) and replace with just

#include <malloc.h>. Remember we need to build for alpha, so add include
./../../Makefile.config to get all our alpha cross compiler settings. However,

during the build libtiff actually compiles a program, runs it, and compiles the

output. Obviously this won't work if we compile it for alpha, so we need to compile

just that program for x86. Under the target g3states.h: change the ${cc} to just

gcc, or whatever x86 compiler you use. Now type make all to compile libtiff. Go

up a directory and volrend will make without problems.

raytrace: Use libtiff from volrend to compile rltotiff. If it doesn't work try

commenting out the BYTESWAP in tiff rgba io.c.

Other Notes:

If you get the error "panic: Need to implement cache resending nacked

packets!" for anything over 16 cores see this email. However, if you change the

buffer in src/mem/Bridge.py it won't have any affect. Instead add these lines to

your fs.py (or wherever you are configuring the system you simulate).
self.bridge.req size a = 128
self.bridge.req size b = 128
self.bridge.resp size b = 128
self.bridge.resp size b = 128

Contact

Philip Jagielski at gmail

Note: do not ask me to share the document with you. I have been getting a large
amount of spam using the “Request to share this document” vector so I will not
respond. Please email me directly.



